Photogeneration and decay of charge carriers in hybrid bulk heterojunctions of ZnO nanoparticles and conjugated polymers.

نویسندگان

  • Pieter A C Quist
  • Waldo J E Beek
  • Martijn M Wienk
  • René A J Janssen
  • Tom J Savenije
  • Laurens D A Siebbeles
چکیده

The photogeneration and decay of charge carriers in blend films of ZnO nanoparticles (diameter 5 nm) and poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) or poly(3-hexylthiophene) (P3HT) were studied by means of microwave-photoconductance measurements. Excitation of the polymer in the visible spectrum was found to lead to a transient photoconductance due to dissociation of excitons at the interface between ZnO and the conjugated polymer. From the similar decay kinetics of the photoconductance and the effects of UV illumination, it is concluded that the measured photoconductance is due to electrons in ZnO. Increasing the weight fraction of ZnO in the blend films leads to a higher photoconductance. This is attributed to enhanced formation of mobile electrons by interfacial dissociation of excitons at clusters of ZnO nanoparticles rather than at individual nanoparticles. The dependence of the photoconductance on the weight fraction of ZnO is found to be different for ZnO:MDMO-PPV and ZnO:P3HT blends. This is most likely due to the presence of a smaller number of relatively large ZnO clusters in ZnO:P3HT blends and a shorter exciton diffusion length, as compared with ZnO:MDMO-PPV blends. After exposure of the blend films to UV light, a significant increase in the magnitude and the lifetime of the photoconductance is observed. This is explained in terms of the filling of electron traps in ZnO by UV exposure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Particle Networks from Powder Mixtures: Generation of TiO2–SnO2 Heterojunctions via Surface Charge-Induced Heteroaggregation

We explored the impact of interfacial property changes on aggregation behavior and photoinduced charge separation in mixed metal oxide nanoparticle ensembles. TiO(2) and SnO(2) nanoparticles were synthesized by metal organic chemical vapor synthesis and subsequently transformed into aqueous colloidal dispersions using formic acid for adjustment of the particles' surface charge. Surface charge-i...

متن کامل

Improving Hybrid Solar Cells: Overcoming Charge Extraction Issues in Bulk Mixtures of Polythiophenes and Zinc Oxide Nanostructures!


 Improving Hybrid Solar Cells: Overcoming Charge Extraction Issues in Bulk Mixtures of Polythiophenes and Zinc Oxide Nanostructures! ! Grant Olson! ! ! Organic photovoltaics (OPVs) have received a great deal of focus in recent years as a possible alternative to expensive silicon based solar technology. Current challenges for organic photovoltaics are centered around improving their lifetimes a...

متن کامل

Ultrafast Charge Transfer and Enhanced Absorption in MoS2-Organic van der Waals Heterojunctions Using Plasmonic Metasurfaces.

Hybrid organic-inorganic heterostructures are attracting tremendous attention for optoelectronic applications due to their low-cost processing and high performance in devices. In particular, van der Waals p-n heterojunctions formed between inorganic two-dimensional (2D) materials and organic semiconductors are of interest due to the quantum confinement effects of 2D materials and the synthetic ...

متن کامل

Direct observation of ultrafast long-range charge separation at polymer-fullerene heterojunctions.

In polymeric semiconductors, charge carriers are polarons, which means that the excess charge deforms the molecular structure of the polymer chain that hosts it. This results in distinctive signatures in the vibrational modes of the polymer. Here, we probe polaron photogeneration dynamics at polymer:fullerene heterojunctions by monitoring its time-resolved resonance-Raman spectrum following ult...

متن کامل

Extraction of Photogenerated Electrons and Holes from a Covalent Organic Framework Integrated Heterojunction

Covalent organic frameworks (COFs) offer a strategy to position molecular semiconductors within a rigid network in a highly controlled and predictable manner. The π-stacked columns of layered two-dimensional COFs enable electronic interactions between the COF sheets, thereby providing a path for exciton and charge carrier migration. Frameworks comprising two electronically separated subunits ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 110 21  شماره 

صفحات  -

تاریخ انتشار 2006